Reduction and Immobilization of Movable Cu2+ Ions in Soils by Fe78Si9B13 Amorphous Alloy

Author:

Pei Liefei,Zhang Xiangyun,Yuan Zizhou

Abstract

The Fe-based amorphous alloy (Fe78Si9B13AP) is applied to the remediation of copper contaminated soil for the first time. The dynamic process of conversion of movable Cu to immobilized forms in the soil system is analyzed. In addition, the dynamic process of form transformation of Cu2+ ions in the soil system is analyzed. The morphology and phase composition of the reaction products are characterized by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). Finally, the feasibility of recovering residual stabilizer particles and attached immobilized copper by the magnetic separation process is discussed. The results show that the apparent reaction rate constant of Fe79Si9B13AP with Cu2+ ions is higher than that of zero valent iron (ZVI) at all the experimental temperatures. According to the Arrhenius formula, the apparent activation energy of the reaction of Fe78Si9B13AP and ZVI with Cu2+ ions is 13.24 and 19.02 kJ/mol, respectively, which is controlled by the diffusion process. The lower apparent activation energy is one of the important reasons for the high reaction activity of Fe78Si9B13AP. After 7 days of reaction, a continuous extraction of the experimental soil shows that the main form of copper in the immobilized soil is Cu and copper combined with iron (hydroxide) oxide, and there is almost no soluble copper with a strong mobility, which effectively reduced the bioavailability of copper in the soil. The magnetic separation results of the treated soil show that the recovery rates of immobilized copper in Fe78Si9B13AP and soil are 47.23% and 21.56%, respectively, which reduced the content of iron and copper in the soil to a certain extent. The above experimental results show that Fe78Si9B13AP is a promising new material for the remediation of heavy metal contaminated soils, and provides more new references for the application of amorphous alloys in the field of remediation of water and soil contaminated by heavy metals and organic matter.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3