MAG Welding Process with Micro-Jet Cooling as the Effective Method for Manufacturing Joints for S700MC Steel

Author:

Węgrzyn Tomasz,Szymczak TadeuszORCID,Szczucka-Lasota Bożena,Łazarz Bogusław

Abstract

Advanced high-strength steel (AHSS) steels are relatively not very well weldable because of the dominant martensitic structure with coarse ferrite and bainite. The utmost difficulty in welding these steels is their tendency to crack both in the heat affected zone (HAZ) and in weld. The significant disadvantage is that the strength of the welded joint is much lower in comparison to base material. Adopting the new technology regarding micro-jet cooling (MJC) after welding with micro-jet cooling could be the way to steer the microstructure of weld metal deposit. Welding with micro-jet cooling might be treated as a very promising welding S700MC steel process. Tensile and fatigue tests were mainly carried out as the main destructive experiments for examining the weld. Also bending probes, metallographic structure analysis, and some non-destructive measurements were performed. The welds were created using innovative technology by MAG welding with micro-jet cooling. The paper aims to verify the fatigue and tensile properties of the thin-walled S700MC steel structure after welding with various parameters of micro-cooling. For the first time, micro-jet cooling was used to weld S700MC steel in order to check the proper mechanical properties of the joint. The main results are processed in the form of the Wöhler’s S–N curves (alternating stress versus number cycles to failure).

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference53 articles.

1. A Review of Technical Standards for Smart Cities

2. Connected Vehicles in Smart Cities: The future of transportationInterestingengineering.com

3. Sharing Cities: A Case for Truly Smart and Sustainable Cities;Mc McLaren,2015

4. Innovative manufacturing technology enabling light weighting with steel in commercial vehicles

5. Weldability of Thermomechanically Treated Steels Having a High Yield Point

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3