Monitoring the Damage Evolution in Rolling Contact Fatigue Tests Using Machine Learning and Vibrations

Author:

Provezza Luca,Bodini IleanaORCID,Petrogalli Candida,Lancini MatteoORCID,Solazzi LuigiORCID,Faccoli MichelaORCID

Abstract

This study shows the application of a system to monitor the state of damage of railway wheel steel specimens during rolling contact fatigue tests. This system can make continuous measurements with an evaluation of damage without stopping the tests and without destructive measurements. Four tests were carried out to train the system by recording torque and vibration data. Both statistical and spectral features were extracted from the sensors signals. A Principal Component Analysis (PCA) was performed to reduce the volume of the initial dataset; then, the data were classified with the k-means algorithm. The results were then converted into probabilities curves. Metallurgical investigations (optical micrographs, wear curves) and hardness tests were carried out to assess the trends of machine learning analysis. The training tests were used to train the proposed algorithm. Three validation tests were performed by using the real-time results of the k-means algorithm as a stop condition. Metallurgical analysis was performed also in this case. The validation tests follow the results of the training test and metallurgical analysis confirms the damage found with the machine learning analysis: when the membership probability of the cluster corresponding to the damage state reaches a value higher than 0.5, the metallurgical analysis clearly shows the cracks on the surface of the specimen due to the rolling contact fatigue (RCF) damage mechanism. These preliminary results are positive, even if reproduced on a limited set of specimens. This approach could be integrated in rolling contact fatigue tests to provide additional information on damage progression.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference37 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3