Control-Oriented Characterization of Product Properties during Hot Hole-Flanging of X46Cr13 Sheet Material in a Progressive-Die

Author:

Martschin JuriORCID,Meya RickmerORCID,Klöser DanielORCID,Meurer ThomasORCID,Tekkaya A. Erman

Abstract

Robust and versatile production is enabled by a closed-loop control of product properties. This essentially relies on the characterization of the interaction between properties and available degrees of freedom to control the process. In particular, this work examines the setting of collar height, thinning, curvature, and hardness during hot hole-flanging of X46Cr13 sheet material with simultaneous heat treatment to identify approaches for a closed-loop property control in hot hole-flanging during multi-stage hot sheet metal forming. To scrutinize the adjustability of the hardness of X46Cr13 sheet material by heat treatment with rapid heating and short dwell times, quenching tests with austenitizing temperatures from 900 to 1100 °C and dwell times from 1 to 300 s were carried out. A hardness between 317 and 680 HV10 was measured. By analyzing the force-displacement curve and the contact situation between tools and blank during hot hole-flanging, an understanding for the process was established. To determine the adjustability of geometrical collar properties and the hardness of the collar, collars were formed at punch speeds between 5 and 100 mm/s and at different temperatures. Here, a dependency of the geometry of the collar on temperature and punch speed as well as setting of the hardness was demonstrated.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3