Ballistic Impact Resistance of Bulletproof Vest Inserts Containing Printed Titanium Structures

Author:

Zochowski Pawel,Bajkowski Marcin,Grygoruk Roman,Magier MariuszORCID,Burian Wojciech,Pyka Dariusz,Bocian Miroslaw,Jamroziak KrzysztofORCID

Abstract

Finite element modeling of ballistic impact of inserts containing titanium structures were presented in the article. The inserts containing an additional layer made using additive manufacturing technology were analyzed. The layer was created from repetitive elements made without connections (adjacent cells were inseparable). Four variants of printed titanium structures were placed between layers of Twaron CT 750 aramid fabric to create ballistic inserts. In order to assess the ballistic resistance of the inserts, numerical simulations of ballistic impact phenomenon were carried out using LS-Dyna software. In the simulations the inserts were placed on a steel box filled with ballistic clay and were fired at with the 9 × 19 mm full metal jacket (FMJ) Parabellum projectile. The main aim of the work was to check the effectiveness of such solutions in soft ballistic protection applications and to select the most effective variant of 3D printed structure. Results of the numerical analysis showed a high potential for 3D printed structures made of titanium alloys to be used for bulletproof vest inserts. In all analyzed cases the projectile was stopped by the armor. In addition, thanks to the cooperation of adjacent cells, the projectile energy density was distributed over a large area, as evidenced by large volumes of hollows in the ballistic clay. The indentations in the ballistic clay obtained in the simulations were significantly lower than the acceptable value for the back face deformation (BFD) parameter required by international body armor standards.

Funder

This research was funded by the National Centre for Research and Development of Poland

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3