Improved Corrosion Behavior of AZ31 Alloy through ECAP Processing

Author:

Alateyah A. I.,Aljohani Talal A.,Alawad Majed O.ORCID,El-Hafez H. AbdORCID,Almutairi A. N.,Alharbi E. S.,Alhamada R.,El-Garaihy B. W.,El-Garaihy W. H.ORCID

Abstract

This study aims to establish the effects of equal channel angular pressing (ECAP) processing on the corrosion behavior and hardness values of the AZ31 Mg alloy. The AZ31 billets were processed through ECAP successfully at 250 °C and their microstructural evolution was studied using optical and field emission scanning electron microscopy. The corrosion resistance of the AZ31 alloy was studied before and after processing through ECAP. The homogeneity of the hardness distribution was studied using both sections cut parallel and perpendicular to the extrusion direction. ECAP processing resulted in highly deformed central regions with elongated grains aligned parallel to the extrusion direction, whereas the peripheral regions showed an ultra-fine-grain recrystallized structure. After processing, small ultra-fine secondary particles were found to be homogeneously dispersed alongside the grain boundaries of the α-Mg matrix. Regarding the corrosion properties, measurements showed that ECAP processing through 1-P and 2-Bc resulted in decreasing their corrosion rate to 67.7% and 78.3%, respectively, of their as-annealed counterpart’s. The corrosion resistance of the ECAPed Mg alloy increased with the number of processing passes. This was due to the refinement of the grain size of the α-Mg matrix and secondary phases till ultra-fine size, caused by the accumulation of strain during processing. On the other hand, ECAP processing through 2-Bc resulted in increasing the Vickers hardness values by 132% and 71.8% at the peripheral and central areas, respectively, compared to the as-annealed counterpart.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3