Numerical Study on the Effects of Water and Heat Transport on Two-Phase Flow in a Polymer Electrolyte Membrane Fuel Cell

Author:

Gong Dapeng,Xu Sichuan,Wang Xuhui,Gao Yuan

Abstract

A one-dimensional transient non-isothermal model was developed to study the two-phase flow phenomenon in a polymer electrolyte membrane fuel cell. The model focused on the phase change between vapor and liquid water, and the transport of oxygen, hydrogen, water, and heat. The cell was discretized into 39 control volumes, and the finite volume method and the iteration method were used to solve the transport equations. The variations in the state parameters of the model during fuel cell operations were analyzed. The results showed that, when the inlet gas humidity was high, the vapor tended to condense in gas diffusion layer regions close to the gas channel. As temperatures in these regions were low, the vapor was more likely to condense. Liquid water appeared latest in the middle of the anode gas diffusion layer, because the vapor concentration in this area is always lower than its saturated value. A higher operating temperature in a cell is beneficial to prevent flooding at the cathode.

Funder

National Natural Science Foundation of China

The National Key R&D Program of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3