Experimental Investigation of Two-Phase Flow Distribution with Different Vertical Header Configurations

Author:

Kim MoojongORCID,Redo Mark AnthonyORCID,Jeong Jongsoo,Saito Kiyoshi,Lee Sangmu,Kim Hyunyoung

Abstract

In this study, we investigated the behavior of two-phase flow distribution inside a vertical header of a microchannel heat exchanger (MCHX) that functions as an evaporator of a heat pump system. In general, the two-phase flow distribution behavior of the refrigerant differs depending on the target application, which ranges from small-scale automobile air-conditioners to large-scale building heat pump systems. Particularly, it is reported that the distribution characteristics in the vertical header of the MCHX vary extensively according to the inlet flow conditions of the refrigerant and the physical profile of the header. In this study, the physical configurations (header height, branch tube diameter) of four types of vertical headers were considered. Thereafter, the operating conditions in an experimental device that simulates an MCHX with a vertical header were selected. The experiment was performed under R410A as the working fluid, with a saturation temperature of 15 °C, inlet mass flow rate of 50–150 kg h−1 (mass flux of 908–2723 kg m−2 s−1), and an inlet vapor quality of 0.1–0.2. The liquid and vapor flow ratios and the relative standard deviation were adopted as metrics to characterize the uniformity of flow distribution. The distribution characteristics were subsequently described according to Reynolds and Froude numbers. The larger the Reynolds number and the smaller the Froude number, the more uniform the two-phase flow distribution becomes. A correlation was proposed as a function of the Reynolds and Froude numbers to predict the flow distribution characteristics for the considered vertical headers.

Funder

New Energy and Industrial Technology Development Organization

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3