Ultramafic Alkaline Rocks of Kepino Cluster, Arkhangelsk, Russia: Different Evolution of Kimberlite Melts in Sills and Pipes

Author:

Kargin Alexey VladimirovichORCID,Nosova Anna Andreevna,Sazonova Ludmila Vyacheslavovna,Tretyachenko Vladimir Vasilievich,Larionova Yulia Olegovna,Kovalchuk Elena Vladimirovna

Abstract

To provide new insights into the evolution of kimberlitic magmas, we have undertaken a detailed petrographic and mineralogical investigation of highly evolved carbonate–phlogopite-bearing kimberlites of the Kepino cluster, Arkhangelsk kimberlite province, Russia. The Kepino kimberlites are represented by volcanoclastic breccias and massive macrocrystic units within pipes as well as coherent porphyritic kimberlites within sills. The volcanoclastic units from pipes are similar in petrography and mineral composition to archetypal (Group 1) kimberlite, whereas the sills represent evolved kimberlites that exhibit a wide variation in amounts of carbonate and phlogopite. The late-stage evolution of kimberlitic melts involves increasing oxygen fugacity and fluid-phase evolution (forming carbonate segregations by exsolution, etc.). These processes are accompanied by the transformation of primary Al- and Ti-bearing phlogopite toward tetraferriphlogopite and the transition of spinel compositions from magmatic chromite to magnesian ulvöspinel and titanomagnetite. Similar primary kimberlitic melts emplaced as sills and pipes may be transitional to carbonatite melts in the shallow crust. The kimberlitic pipes are characterised by low carbonate amounts that may reflect the fluid degassing process during an explosive emplacement of the pipes. The Kepino kimberlite age, determined as 397.3 ± 1.2 Ma, indicates two episodes of ultramafic alkaline magmatism in the Arkhangelsk province, the first producing non-economic evolved kimberlites of the Kepino cluster and the second producing economic-grade diamondiferous kimberlites.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3