Iron Isotope Compositions of Coexisting Sulfide and Silicate Minerals in Sudbury-Type Ores from the Jinchuan Ni-Cu Sulfide Deposit: A Perspective on Possible Core-Mantle Iron Isotope Fractionation

Author:

Wang Peiyao,Niu YaolingORCID,Sun Pu,Wang Xiaohong,Guo Pengyuan,Gong Hongmei,Duan Meng,Shen Fangyu,Shi Yining,Xue Song,Chen Yanhong,Shan Li

Abstract

Many studies have shown that the average iron (Fe) isotope compositions of mantle-derived rocks, mantle peridotite and model mantle are close to those of chondrites. Therefore, it is considered that chondrite values represent the bulk Earth Fe isotope composition. However, this is a brave assumption because nearly 90% of Fe of the Earth is in the core, where its Fe isotope composition is unknown, but it is required to construct bulk Earth Fe isotope composition. We approach the problem by assuming that the Earth’s core separation can be approximated in terms of the Sudbury-type Ni-Cu sulfide mineralization, where sulfide-saturated mafic magmas segregate into immiscible sulfide liquid and silicate liquid. Their density/buoyancy controlled stratification and solidification produced net-textured ores above massive ores and below disseminated ores. The coexisting sulfide minerals (pyrrhotite (Po) > pentlandite (Pn) > chalcopyrite (Cp)) and silicate minerals (olivine (Ol) > orthopyroxene (Opx) > clinopyroxene (Cpx)) are expected to hold messages on Fe isotope fractionation between the two liquids before their solidification. We studied the net-textured ores of the Sudbury-type Jinchuan Ni-Cu sulfide deposit. The sulfide minerals show varying δ56Fe values (−1.37–−0.74‰ (Po) < 0.09–0.56‰ (Cp) < 0.53–1.05‰ (Pn)), but silicate minerals (Ol, Opx, and Cpx) have δ56Fe values close to chondrites (δ56Fe = −0.01 ± 0.01‰). The heavy δ56Fe value (0.52–0.60‰) of serpentines may reflect Fe isotopes exchange with the coexisting pyrrhotite with light δ56Fe. We obtained an equilibrium fractionation factor of Δ56Fesilicate-sulfide ≈ 0.51‰ between reconstructed silicate liquid (δ56Fe ≈ 0.21‰) and sulfide liquid (δ56Fe ≈ −0.30‰), or Δ56Fesilicate-sulfide ≈ 0.36‰ between the weighted mean bulk-silicate minerals (δ56Fe[0.70ol,0.25opx,0.05cpx] = 0.06‰) with weighted mean bulk-sulfide minerals (δ56Fe ≈ −0.30‰). Our study indicates that significant Fe isotope fractionation does take place between silicate and sulfide liquids during the Sudbury-type sulfide mineralization. We hypothesize that significant iron isotope fractionation must have taken place during core–mantle segregation, and the bulk Earth may have lighter Fe isotope composition than chondrites although Fe isotope analysis on experimental sulfide-silicate liquids produced under the varying mantle depth conditions is needed to test our results. We advocate the importance of further research on the subject. Given the close Fe-Ni association in the magmatic mineralization and the majority of the Earth’s Ni is also in the core, we infer that Ni isotope fractionation must also have taken place during the core separation that needs attention.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3