Carbonation Reaction Mechanisms of Portlandite Predicted from Enhanced Ab Initio Molecular Dynamics Simulations

Author:

Mutisya Sylvia M.,Kalinichev Andrey G.ORCID

Abstract

Geological carbon capture and sequestration (CCS) is a promising technology for curbing the global warming crisis by reduction of the overall carbon footprint. Degradation of cement wellbore casings due to carbonation reactions in the underground CO2 storage environment is one of the central issues in assessing the long-term success of the CCS operations. However, the complexity of hydrated cement coupled with extreme subsurface environmental conditions makes it difficult to understand the carbonation reaction mechanisms leading to the loss of well integrity. In this work, we use biased ab initio molecular dynamics (AIMD) simulations to explore the reactivity of supercritical CO2 with the basal and edge surfaces of a model hydrated cement phase—portlandite—in dry scCO2 and water-rich conditions. Our simulations show that in dry scCO2 conditions, the undercoordinated edge surfaces of portlandite experience a fast barrierless reaction with CO2, while the fully hydroxylated basal surfaces suppress the formation of carbonate ions, resulting in a higher reactivity barrier. We deduce that the rate-limiting step in scCO2 conditions is the formation of the surface carbonate barrier which controls the diffusion of CO2 through the layer. The presence of water hinders direct interaction of CO2 with portlandite as H2O molecules form well-structured surface layers. In the water-rich environment, CO2 undergoes a concerted reaction with H2O and surface hydroxyl groups to form bicarbonate complexes. We relate the variation of the free-energy barriers in the formation of the bicarbonate complexes to the structure of the water layer at the interface which is, in turn, dictated by the surface chemistry and the degree of nanoconfinement.

Funder

Horizon 2020 Framework Programme

NRU HSE

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3