Assessment of the Resilience of a Tartary Buckwheat (Fagopyrum tataricum) Cultivation System in Meigu, Southwest China

Author:

Song YingjieORCID,Jarvis Devra I.ORCID,Bai Keyu,Feng Jinchao,Long ChunlinORCID

Abstract

Recent socioeconomic development, increased transport and new agricultural technology are endangering the survival of traditional agriculture and the Yi people’s traditional knowledge of cultivating Tartary buckwheat. The cultural heritage of Tartary buckwheat cultivation among the Yi communities needs to be investigated and protected before its loss. The main objectives of this study are to document the Tartary buckwheat cultivation system, to analyze the agroecosystem networks that support the current system, and to measure the resilience of the ecological, agricultural and social systems using relevant indicators. The Tartary buckwheat cultivation system in Meigu County uses a rotation system, in which various crops are planted alternatively (e.g., Tartary buckwheat, green manure and potato/corn), utilizing bunch planting and furrow drilling technology. Tartary buckwheat has an important position in the major festival activities among the Yi people’s communities. Network analysis on the current agricultural system, ecosystem and social system indicated that the system was stable. The mean score of ecological, agricultural and social stability were 2.50, 2.85 and 2.53, respectively, indicating moderately stability. In contrast, socio-ecological production landscapes and seascapes (SEPLS) resilience indicators in Meigu performed only moderately, with a score of 2.63. The assessment of the resilience of the Tartary buckwheat cultivation system can provide some guidance for policy makers to strengthen biodiversity conservation, sustainable agricultural production and livelihood development (e.g., land use, responding to extreme environmental stresses and improving education levels).

Funder

National Natural Science Foundation of China

Ministry of Ecology and Environment

Minzu University of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3