Abstract
The synergistic charring, flame-retardant behavior of the macromolecular charring agents polyimide (PI) and melamine polyphosphate (MPP) were studied in glass fiber-reinforced polyamide 66 (PA66). This kind of synergistic charring effect is explained by the fact that PI performed better char-forming ability while working with phosphorus content. The research results showed that, compared with the incorporation of individual MPP, MPP/PI with an appropriate ratio exhibited better flame retardancy and better charring ability. A blend of 11.9%MPP/5.1%PI/PA66 possessed an increased LOI (limiting oxygen index) value of 33.9% and passed the UL94 V-0 rating, obtained a lower peak heat release rate value (pk-HRR), a lower total heat release (THR) value, a lower total smoke release (TSR) value, and a higher residue yield. The results verified the synergistic flame-retardant effect between MPP and PI in the PA66 composite. Melamine polyphosphate and PI jointly interacted with PA66 matrix and locked more carbonaceous compositions in residue and formed a more compact char layer, resulting in a reduced burning intensity and a reduction in the release of fuels. Therefore, the enhanced flame-retardant effect of the MPP/PI system is attributed to the higher charring ability and stronger barrier effect of the char layer in PA66 in the condensed phase.
Funder
National Natural Science Foundation of China
Subject
Polymers and Plastics,General Chemistry
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献