Abstract
We investigated the possibility of improving the performance of polysulfone (PSf) membranes to be used in carbon dioxide capture devices by blending PSf with a commercial polyethylene imine, Lupasol G20, previously modified with benzoyl chloride (mG20). Additive amount ranged between 2 and 20 wt %. Membranes based on these blends were prepared by phase inversion precipitation and exhibited different morphologies with respect to neat PSf. Surface roughness, water contact angles, and water uptake increased with mG20 content. Mass transfer coefficient was also increased for both N2 and CO2; however, this effect was more evident for carbon dioxide. Carbon dioxide absorption performance of composite membranes was evaluated for potassium hydroxide solution in a flat sheet membrane contactor (FSMC) in cross flow module at different liquid flow rates. We found that, at the lowest flow rate, membranes exhibit a very similar behaviour to neat PSf; nevertheless, significant differences can be found at higher flow rates. In particular, the membranes with 2 and 5 wt % additive behave more efficiently than neat PSf. In contrast, 10 and 20 wt % additive content has an adverse effect on CO2 capture when compared with neat PSf. In the former case, a combination of additive chemical affinity to CO2 and membrane porosity can be claimed; in the latter case, the remarkably higher wettability and water uptake could determine membrane clogging and consequent loss of efficiency in the capture device.
Subject
Polymers and Plastics,General Chemistry
Reference22 articles.
1. An overview of current status of carbon dioxide capture and storage technologies
2. Climate Change 2013: The Physical Science Basis, in Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change;Stocker,2013
3. IPCC Special Report on Carbon Dioxide Capture and Storage. Working Group III of the Intergovernmental Panel on Climate Change;Metz,2005
4. Gas/gas membrane contactors – An emerging membrane unit operation
5. Status and progress of membrane contactors in post-combustion carbon capture: A state-of-the-art review of new developments
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献