Abstract
A suitably modified resin film infusion (RFI) process was used for manufacturing carbon fiber-reinforced composites (CFRCs) impregnated with a resin containing nanocages of glycidyl polyhedral oligomeric silsesquioxane (GPOSS) for enhancing flame resistance and multi-wall carbon nanotubes (MWCNTs) to contrast the electrical insulating properties of the epoxy resin. The effects of the different numbers (7, 14 and 24) of the plies on the equivalent direct current (DC) and alternating current (AC) electrical conductivity were evaluated. All the manufactured panels manifest very high values in electrical conductivity. Besides, for the first time, CFRC strings were analyzed by tunneling atomic force microscopy (TUNA) technique. The electrical current maps highlight electrically conductive three-dimensional networks incorporated in the resin through the plies of the panels. The highest equivalent bulk conductivity is shown by the seven-ply panel characterized by the parallel (σ//0°) in-plane conductivity of 16.19 kS/m. Electrical tests also evidence that the presence of GPOSS preserves the AC electrical stability of the panels.
Funder
Horizon 2020 Framework Programme
Subject
Polymers and Plastics,General Chemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献