Abstract
One of the major obstacles for polyhydroxybutyrate (PHB), a biodegradable and biocompatible polymer, in commercial applications is its poor elongation at break (~3%). In this study, the effects of nanocellulose contents and their types, including cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs) on the crystallization, thermal, and mechanical properties of PHB composites were systematically compared. We explored the toughening mechanisms of PHB by adding CNCs and cellulose CNFs. The results showed that when the morphology of bagasse nanocellulose was rod-like and its content was 1 wt %, the toughening modification of PHB was the best. Compared with pure PHB, the elongation at break and Young’s modulus increased by 91.2% and 18.4%, respectively. Cellulose nanocrystals worked as heterogeneous nucleating agents in PHB and hence reduced its crystallinity and consequently improved the toughness of PHB. This simple approach could potentially be explored as a strategy to extend the possible applications of this biopolymer in packaging fields.
Funder
National Natural Science Foundation
Subject
Polymers and Plastics,General Chemistry
Cited by
96 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献