Nitramine-Group-Containing Energetic Prepolymer: Synthesis, and Its Properties as a Binder for Propellant

Author:

Hwang ,Mun ,Jung ,Cho ,Kim ,Min ,Jeon ,Kim

Abstract

A composite solid propellant which generates high propulsive force in a short time is typically composed of an oxidizer, a metal fuel powder and a binder. Among these, the binder is an important component. The binder maintains the mechanical properties of propellant grains and endures several thermal and mechanical stresses in the engine. Several studies have been reported for the development of energetic propellant binders for increasing the propellant′s propulsive force. While several materials have been studied for the synthesis of energetic prepolymers, a nitramine-group-containing prepolymer is a suitable candidate because these types of prepolymers are less toxic and more cost-effective when compared to the traditional glycidyl azide polymers (GAP) and triazole-based prepolymers. Considering the lack of studies for the binder using a nitramine-group-containing prepolymers, we synthesized a nitramine-group-containing monomer and polymerized a nitramine-group-containing prepolymer. The prepolymer was then used for the preparation of the binder and its thermal and mechanical properties, as well as the effect of the plasticizer, were studied. The binder that was prepared using the prepolymer containing a nitramine-group showed very high elongation, tensile strength. Nitrate-ester (NE)-type plasticizer could reduce the glassy transition temperature (Tg)of the binder successfully. Also, high-energy is released due to the decomposition of the nitramine-group at around 245 °C, thus exhibiting the efficiency of the nitramine-group-containing prepolymer as an excellent energetic binder material.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference35 articles.

1. The families, and selection of the solid propellants;Yim;Korean Soc. Aeronaut. Space Sci.,1994

2. Synthesis of an Energetic Nitrate Ester

3. Azido Polymers—Energetic Binders for Solid Rocket Propellants

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3