Thermomechanical Characterization and Modeling of Cold-Drawing of Poly(ethylene Terephthalate)

Author:

Oberer Jürgen,Schneider Konrad,Majschak Jens-Peter

Abstract

The tensile testing of amorphous polyethylene terephthalate is observed until failure by IR thermography and optical strain measurement. The deformation can be subdivided in six deformation phases: elastic deformation, neck formation with a localized sharp temperature rise, neck propagation, which is also known as cold-drawing, with heat generation in a transition zone, crack initialization with local heating, crack growth, and rupture. These deformation phases are showing different mechanical and thermal reactions to the deformation. The initial and drawn samples are studied with differential scanning calorimetry. Alongside heating due to the dissipation of mechanical energy, latent heat due to strain-induced crystallization was detected. While the material is cold-drawn, a high dependence on the crosshead speed is found for the heat generation as well as the draw ratio, mechanical response, and morphological changes due to orientation and crystallization. For cold-drawing, a thermomechanical model is introduced, which is based on the first law of thermodynamics and reproduces the temperature distribution along the sample.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference18 articles.

1. Heating effects in the deformation of thermoplastics

2. Thermo-mechanical coupling and self-excited oscillation in the neck propagation of PET films;Akihiko;Polym. Mattice Spec. Issue,2002

3. Observation of polymer film drawing by use of thermography. An introductory investigation on the thermodynamics;Tatsuo;J. Appl. Polym. Sci.,2006

4. Study of the necking phenomenon in fiber drawing by infrared thermography

5. Self-oscillatory neck propagation in polymers;Sergey;J. Appl. Polym. Sci.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3