Synthesis and Self-Assembly of Multistimulus-Responsive Azobenzene-Containing Diblock Copolymer through RAFT Polymerization

Author:

Yang Po-ChihORCID,Chien Yueh-Han,Tseng Shih-Hsuan,Lin Chia-Chung,Huang Kai-Yu

Abstract

This paper gathered studies on multistimulus-responsive sensing and self-assembly behavior of a novel amphiphilic diblock copolymer through a two-step reverse addition-fragmentation transfer (RAFT) polymerization technique. N-Isopropylacrylamide (NIPAM) macromolecular chain transfer agent and diblock copolymer (poly(NIPAM-b-Azo)) were discovered to have moderate thermal decomposition temperatures of 351.8 and 370.8 °C, respectively, indicating that their thermal stability was enhanced because of the azobenzene segments incorporated into the block copolymer. The diblock copolymer was determined to exhibit a lower critical solution temperature of 34.4 °C. Poly(NIPAM-b-Azo) demonstrated a higher photoisomerization rate constant (kt = 0.1295 s−1) than the Azo monomer did (kt = 0.088 s−1). When ultraviolet (UV) irradiation was applied, the intensity of fluorescence gradually increased, suggesting that UV irradiation enhanced the fluorescence of self-assembled cis-isomers of azobenzene. Morphological aggregates before and after UV irradiation are shown in scanning electron microscopy (SEM) and dynamic light scattering (DLS) analyses of the diblock copolymer. We employed photoluminescence titrations to reveal that the diblock copolymer was highly sensitive toward Ru3+ and Ba2+, as was indicated by the crown ether acting as a recognition moiety between azobenzene units. Micellar aggregates were formed in the polymer aqueous solution through dissolution; their mean diameters were approximately 205.8 and 364.6 nm at temperatures of 25.0 and 40.0 °C, respectively. Our findings contribute to research on photoresponsive and chemosensory polymer material developments.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3