A Modified Aging Kinetics Model for Aging Condition Prediction of Transformer Polymer Insulation by Employing the Frequency Domain Spectroscopy

Author:

Liu JiefengORCID,Fan XianhaoORCID,Zhang YiyiORCID,Zheng HanboORCID,Wang Zixiao,Zhao Xixi

Abstract

The aging kinetics model is of great interest to scholars since it is capable of describing the variation law between the degree of polymerization (DP) and the aging duration of transformer polymer (cellulose) insulation. However, it is difficult to determine the moisture content inside the transformer polymer insulation without destroying it, so that the model parameters cannot be confirmed. Such limitation greatly restricts its application. It is interesting to note that as long as the moisture content of the transformer polymer insulation could be characterized (replaced) by a certain feature parameter, the above issue will be solved naturally. The existing researches indicate that the Frequency Domain Spectroscopy (FDS) is sensitive to moisture. Consequently, the feature parameter that could characterize the moisture inside transformer polymer insulation (extracted from the FDS curve) can be used to report a modified aging kinetics model, which could perform the aging condition prediction of transformer polymer insulation under various test conditions, including aging duration, aging temperature, and initial moisture. In that respect, the average relative error of prediction results of prepared samples is equal to 7.41%, which reveals that the reported model might be serviced as a potential tool for the aging condition prediction of transformer polymer insulation.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3