Abstract
A novel nitroxyl radical polymer poly(TEMPO-acrylamide-co-sodium styrene sulfonate) (abbreviated as poly(TAm-co-SSS)) was synthesized using 4-acrylamido-2,2,6,6- tetramethylpiperidine (AATP) copolymerized with styrene sulfonate sodium (SSS). AATP was synthesized through a substitution reaction of acryloyl chloride. Meanwhile, poly(4-acrylamido-2,2,6,6-tetramethylpiperidine-1-nitroxyl radical) (PTAm) was prepared as a control sample. Then, the structures of products were characterized by nuclear magnetic resonance spectroscopy (1H-NMR), Fourier transform infrared spectroscopy (FT-IR), high performance liquid chromatography-mass spectrometry (HPLC-MS), differential scanning calorimetry (DSC), X-Ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR), respectively. Additionally, the electrochemical impedance spectra (EIS) and the charge-discharge cycling properties were studied. The results demonstrated that the poly(TAm-co-SSS) with the side group of sodium sulfonate adjacent to TEMPO group exhibits a better charge-discharge cycling stability than that of the PTAm. Moreover, the charge specific capacity of the poly(TAm-co-SSS) is larger than that of the PTAm. Besides, the first coulombic efficiency of poly(TAm-co-SSS) is higher in comparison with that of PTAm. These superior electrochemical performances were ascribed to the synergistic effect of sulfonate ions group and nitroxyl radical structure, which benefits the improvement of charge carrier transportation of the nitroxyl radical polymers. Consequently, the nitroxyl radical poly(TAm-co-SSS) is promising for use in organic radical battery materials, based on the good electrochemical properties.
Funder
Natural Science Foundation of Shaanxi Province
Subject
Polymers and Plastics,General Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献