Abstract
In this short communication, TiO2-nanoparticle-functionalized biodegradable polylactide (PLA) nonwoven scaffolds with a superhydrophobic and superadhesive surface are reported regarding their water immobilization, antibacterial performance, and deodorization. With numerous regular oriented pores on their surface, the as-fabricated electrospun porous PLA/TiO2 composite fibers possessed diameters in the range from 5 µm down to 400 nm, and the lengths were even found to be up to the meters range. The PLA/TiO2 composite fiber surface was demonstrated to be both superhydrophobic and superadhesive. The size of the pores on the fiber surface was observed to have a length of 200 ± 100 nm and a width of 150 ± 50 nm using field-emission scanning electron microscopy and transmission electron microscopy. The powerful adhesive force of the PLA/TiO2 composite fibers toward water droplets was likely a result of van der Waals forces and accumulated negative pressure forces. Such a fascinating porous surface (functionalized with TiO2 nanoparticles) of the PLA/TiO2 composite fiber scaffold endowed it with multiple useful functions, including water immobilization, antibacterial performance, and deodorization.
Funder
National Natural Science Foundation of China
Subject
Polymers and Plastics,General Chemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献