Abstract
Numerous studies have confirmed that forests have the potential for a significant contribution to carbon sequestration, but afforestation of former agricultural land can be attempted to adopt technologies that further encourage carbon sequestration. The aim of this study was to evaluate the impact of different soil cultivation methods, including deep ploughing and soil cultivation by making microsites and furrows prior to afforestation of former agricultural land, on chemical soil properties and tree growth in 20 years old Scots pine plantations. A naturally regenerated Scots pine stand, representing the non-ploughed soil, was included as a control site. Deep ploughing, among other soil cultivation methods, significantly altered the chemical soil properties. Furthermore, significant effects were indicated in the sites afforested after cultivation by making furrows. A recent study found that, due to deep soil cultivation, higher stocks of soil organic carbon (SOC) and total nitrogen (N) were incorporated into deeper soil layers and were protected from direct environmental impact. Twenty years post afforestation in deeply ploughed sites, we still found a decreased C:N ratio and disbalanced relationship between the concentrations of SOC and total N. The SOC and total N stocks were higher in the subsoil than in the topsoil in the sites afforested after deep ploughing. Moreover, deep ploughing and soil cultivation by furrows prior to afforestation resulted in higher total SOC and total N stocks in the forest floor and mineral 0–80 cm soil layer. A higher total phosphorus (P) concentration in the subsoil and total potassium (K) in the upper mineral soil layer were obtained in the deep ploughing sites and the sites, cultivated by furrows, compared to the non-ploughed sites. Significantly higher total P stock per entire profile was found for the deep ploughing sites and the sites cultivated by furrows than in the naturally regenerated stand. Different soil cultivation methods caused no differences in tree diameter at breast height (DBH) in 20 years old Scots pine stands both in the afforested sites and in the naturally regenerated forest. However, significantly larger tree height in all afforested sites than in the naturally regenerated Scots pine stands was obtained. A lower differentiation in tree DBH was obtained in the deep ploughing sites.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献