Environmental Impact Assessment of the Subsurface in a Former W-Sn Mine: Integration of Geophysical Methodologies

Author:

Almeida Hender1,Gomes Marques Maria2,Sant’Ovaia Helena3ORCID,Moura Rui1,Espinha Marques Jorge3ORCID

Affiliation:

1. Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal

2. Sixense, Rua do Batalheiro, nº 39, 2580-061 Alenquer, Portugal

3. Instituto de Ciências da Terra, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal

Abstract

Associated with the exploitation of metallic minerals in Europe during the 20th century, several mining areas were abandoned without adequate environmental intervention. Furthermore, these areas lack studies to characterize the impact of pollution on the hydrogeological system. The area surrounding the tungsten mine of Regoufe, in northern Portugal, is one such area exploited during the Second World War. The accumulation of sulfide-rich tailings may have caused an acid mine drainage (AMD), where the leaching processes caused by seepage water led to soil contamination, evidenced by its acid character and anomalous concentrations of some Potentially Toxic Elements (PTE) reported in previous studies. The present research proposes an innovative approach that seeks the integration of different geophysical techniques to characterize the impact of mining activity on the subsurface. Electrical resistivity (ER) and electromagnetic (EM) were used to measure subsurface electrical properties. In addition, seismic refraction and Multichannel Analysis of Surface Waves (MASW) were performed to characterize the geometry, depth, and geomechanical behavior of the soil and rock bodies. The integration of these techniques allowed the interpretation of hydrogeological sections and a 3D resistivity volume to gain insight into the distribution of potentially contaminating fluids and tailings material present in the mining valley.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3