Abstract
The material source and the evolution of ore-forming hydrothermal fluids of Xiaojiashan gold deposits remain controversial. We carried out a mineralogical characteristics analysis, trace elements analysis, sulfur isotope composition analysis, and fluid inclusion microthermometry in order to explore the ore-forming sources, conditions, and process of this deposit. Gold mineralization can be divided into three stages: the quartz-pyrite stage, the quartz-polymetallic sulfide stage, and the quartz-ankerite stage. This gold deposit was probably formed under the following conditions: temperature of 122–343 °C and salinity of 0.8–11.4 wt% (NaCl). It was inferred that the ore-forming hydrothermal fluids were early metamorphic–hydrothermal (Stage I) and late magmatic–hydrothermal (Stages II and III), and were characterized by medium–low temperature and medium–low salinity based on fluid inclusion microthermometry and S isotope composition. The temperature and salinity of the ore-forming fluid decreased during mineralization, which was caused by the involvement of groundwater. The chondrite-normalized trace element patterns of the gold ores are similar to the host rocks of the Lengjiaxi Formation, indicating that the ore-forming materials were sourced from the Lengjiaxi Formation. The S isotopes indicated that the magmatic components also provided the ore-forming materials during Stages II and III.
Funder
National Key R&D Program of China
Natural Science Foundation of China
Science and Technology Program of Shaanxi
Xi’an Science and Technology Bureau
Scientific Research Project of Youth Team for Innovation of Construction Science of Shaanxi Provincial Department of Education
Education Program of Shaanxi
Subject
Geology,Geotechnical Engineering and Engineering Geology