Abstract
Nanoparticles, defined as particles with one dimension below 100 nm, contribute little to the total mass concentration in respirable coal mine dust (RCMD) toxicological studies, but they could have a considerable part in the adverse health effects by RCMD inhalation. It has been shown that inhaled nanoparticles can penetrate deep into the lung and could plausibly contribute to acute and chronic pulmonary diseases by triggering oxidative stress formation and inducing inflammation. RCMD nanoparticles from samples collected in an underground mine in the United States were analyzed by a particle separation technique, field-flow fractionation (FFF), for size, morphology, and elemental composition. Two sub-techniques, asymmetrical flow field-flow fractionation (AsFlFFF), and sedimentation field-flow fractionation (SdFFF) were used to increase the detection size range. Nanoparticles with a size range between 25–400 nm were detected. Fractions were collected throughout the size distribution and were analyzed by electron microscopy and inductively-coupled plasma mass spectrometry (ICP-MS). Electron micrographs showed the presence of carbonaceous particles, mineral particles, diesel particles, and aggregates. Major and trace elements such as Si and Ca were detected in high abundance in all fractions. Other metals included Mg, Fe, Al, Cs, and Pb. Higher relative concentrations of Cs and Pb were observed at the size range below 30 nm. The data suggests that nanoparticles in RCMD can be highly reactive, either as a result of their size or their potential to carry toxins such as transition and heavy metals. To the best of the authors’ knowledge, this is the first data on the size, morphology, and composition of RCMD nanoparticles with a size below 100 nm.
Funder
National Institute for Occupational Safety and Health
Subject
Geology,Geotechnical Engineering and Engineering Geology
Reference35 articles.
1. Continued increase in prevalence of coal workers’ pneumoconiosis in the United States, 1970–2017;Blackley;Am. J. Public Health,2018
2. (2022, December 19). Coal Mine Dust Exposures and Associated Health Outcomes, A Review of Information Published Since 1995. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. DHHS (NIOSH) Publication No. 2011-172, Available online: https://www.cdc.gov/niosh/docs/2011-172/pdfs/2011-172.pdf.
3. Small mine size is associated with lung function abnormality and pneumoconiosis among underground coal miners;Blackley;Occup. Environ. Med.,2014
4. Respirable coal mine dust characteristics in samples collected in central and northern Appalachia;Sarver;Int. J. Coal. Geol.,2017
5. Beyond conventional metrics: Comprehensive characterization of respirable coal mine dust;Sarver;Int. J. Coal. Geol.,2019
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献