Formation of the Chalukou High Fluorine-Type Mo (–Zn–Pb) Deposit, NE China: Constraints from Fluorite and Sphalerite Rare Earth Elements and Sr–Nd Isotope Compositions

Author:

Jin Luying,Qin Kezhang,Li Guangming,Zhao Junxing,Li Zhenzhen,Chu Zhuyin,Song Guoxue

Abstract

Fluorite is a widespread mineral in porphyry and hydrothermal vein Mo-polymetallic deposits. Here, fluorite is utilised as a probe to trace the fluid source and reveal the fluid evolution process in the Chalukou giant Mo (Pb–Zn) deposit, Northeast China, which is characterised as early porphyry Mo and later vein-style Zn–Pb mineralisation. A detailed rare earth element (REE) and Sr–Nd isotope study of fluorite combined with Sr isotopes of sphalerite is conducted for the Chalukou deposit. The chondrite-normalised REE patterns of fluorites from molybdenite veins show light REE (LREE)-enriched patterns, with negative Eu anomalies (δEu = 0.60) and weakly negative Y anomalies (Y/Y* = 0.72). The fluorites associated with sphalerite veins exhibit rare earth element (REE)-flat patterns with negative Eu anomalies (δEu = 0.65 to 0.99) and positive Y anomalies (Y/Y* = 1.37 to 3.08). In addition, during the progression from Mo to Zn–Pb mineralisation, the total concentration of REEs decreases from 839 ppm to 53.7 ppm, and Y/Ho ratios increase from 22.1 to 92.5. These features may be explained by the different mobilities of REE complexes during fluid migration. The Eu anomalies are considered to be inherited from source fluids. All the initial 87Sr/86Sr ratios of fluorite and sphalerite are between those of ore-forming porphyries and wall rocks (rhyolite), with fluorite ratios ranging from 0.706942 to 0.707386 and sphalerite ratios varying from 0.705221 to 0.710417. The majority of εNd(t) values of fluorite varying from −6.4 to −3.6 are also located between the ratios exhibited by ore-forming porphyries and rhyolite, whereas three εNd(t) values of fluorites ranging from −0.26 to 0.36 are close to those of ore-forming porphyries. All the isotopic features indicate that the Sr-Nd isotope ratios of hydrothermal fluid are derived from porphyries and disturbed by fluid–rock reactions. Together with a two-stage Sr–Nd isotope mixing model, we suggest that different sources and fluid–rock interactions (syn-ore intrusions and strata) finally influence the Sr–Nd isotopes of the ore-forming fluids, which are recorded by the majority of fluorite and sphalerite.

Funder

National Natural Science Foundation

Society of Economic Geologists Hugh McKinstry Fund

Youth Innovation Promotion Association CAS

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3