Investigation into the Gaseous SO2 Attack on Sandstone in the Yungang Grottoes

Author:

Zhang YueORCID,Cao Cheng,Du Houmeng,Huang JizhongORCID,Guo Xiuwei,Luo Qingyang,Ren Jianguang

Abstract

The Yungang Grottoes, with over 1500 years of history, have been subjected to air pollution since the last century. Field investigations have indicated that acid gases, particularly sulfur dioxide (SO2), have accumulated on the surface of the sculptures and caused various types of decay that reduce their artistic value. To shed new light on the gas–stone interaction process, artificially accelerated weathering was performed on local sandstone in the laboratory. In a specially developed test device, fresh specimens were exposed to gaseous SO2 under different relative humidity and temperature conditions. The physical, mineralogical, and chemical changes of Yungang sandstone were evaluated conjointly using destructive and non-destructive methods. The results show that after weathering, the luminosity of all specimens changed, with a slight alteration in hue toward yellow. The weight increased to various degrees during the aging cycles, which depended on both the accumulation of matter and the detachment of particles. Higher relative humidity and cyclic temperature fluctuations favored the dissolution of carbonates and the hydrolysis of feldspar in sandstone. The concentration of ions, especially dissolved Ca2+ and SO42−, increased considerably over time in the near-surface region of the specimens. A trace of newly formed gypsum was detected in some specimens at the end of the test. Knowing the synergistic impact of different climatic variables will make it possible to identify the mechanisms of the deterioration of sandstone in complex environments.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference59 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3