Contribution of Triassic Tectonomagmatic Activity to the Mineralization of Liziyuan Orogenic Gold Deposits, West Qinling Orogenic Belt, China

Author:

Wang Shuo,Liu Zhanjin,Liu Yunhua,Deng Nan,Yang Benzhao,Tan Le

Abstract

The Western Qinling orogenic belt (WQOB) is one of the most important prospective gold districts in China, with widely distributed Indosinian intermediate–acidic intrusions. The Liziyuan Au deposit is a representative orogenic deposit in the northern WQOB, hosting several sections spatially associated with igneous rocks. The Au deposit is hosted by meta-sedimentary volcanic rocks of the Cambrian–Ordovician Liziyuan Group and the Tianzishan monzogranite. Two periods, including five stages of mineralization, are recognized in this area: an early metamorphic mineralization period (PI), including quartz–pyrite (Stage I) and banded quartz–polymetallic sulfide (Stage II) veins, and a later magmatic mineralization period (PII) including quartz–K-feldspar–pyrite–molybdenite veins (Stage III), quartz–polymetallic sulfide–chlorite ± calcite veinlets and stockwork (Stage IV), and late calcite–quartz veinlets (Stage V). Geochronological studies indicate a SHRIMP zircon U-Pb age of 236.1 Ma for the Tianzishan monzogranite, and our published ages of ore-bearing diorite porphyrite of the Suishizi section and granite porphyry of the Jiancaowan section being 213 and 212 Ma, respectively. Pyrites formed in association with PI and PII mineralization have well-defined Rb–Sr ages of 220 ± 7.5, 205.8 ± 8.7, and 199 ± 15 Ma, with close temporospatial coupling between mineralization and magmatism. The δ18O and δD values of fluid inclusions in Stage IV auriferous quartz veins range from −0.03‰ to +5.24‰ and −93‰ to −75‰, respectively, suggesting that mineralizing fluid was likely of magmatic origin. Three distinct ranges of δ34S values are identified in the studied sections (i.e., 7.04‰–9.12‰, −4.95‰ to −2.44‰, and 0.10‰–3.08‰), indicating a source containing multiple sulfur isotopes derived from magmatic and metamorphic fluids. The Liziyuan Au deposit is thus likely an orogenic deposit closely related to magmatism. Geochemical characteristics indicate that Tianzishan monzogranite is adakitic and was derived from thickened lower crust during Triassic orogenesis. The ore-bearing diorite porphyrite and granite porphyry formed in a post-collision extensional setting. Together with previous geological and geochemical data, our results indicate that the Liziyuan orogenic Au deposit was formed by early collisional–compressional metamorphism and late post-collision extensional magmatic fluids related to the evolution of the WQOB.

Funder

National Natural Science Foundation of China

Researches on the coupling between structural deformation and mineralization, and metallogenic prediction of Jinchangyu gold deposit

Researches on the typical Au deposits and metallogenic regularity in Shiquan-Xunyang metallogenic belt

The Natural Science Foundation of Shaanxi Province

Opening Foundation of Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Natural Resources

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3