CO2 Dipole Moment: A Simple Model and Its Implications for CO2-Rock Interactions

Author:

Calcara MassimoORCID,Caricaterra Matteo

Abstract

CO2 is a widespread fluid naturally occurring within the Earth crust or injected in deep strata for technological issues such as Carbon Capture and Storage (CCS). At STP conditions, CO2 is a gas, with a net zero dipole moment. Growing pressures produce an increase in its density. The reduced intermolecular distance causes a variation in the molecular structure, due to the intensification of mutual interactions. Some published spot data reveal the departure from the planarity of the bond angle while others provide few values of the CO2 dipole moment. Based on a small amount of literature-measured angle values, it was possible first to extrapolate a correlation between bond angle and density (R2 = 0.879). By fixing the partial charges distribution, we present a simple model that allows the calculation of the CO2 dipole moment directly from the geometry of the molecule, in the range of 179–162 degrees, 1-degree step. Results give values up to about 1 D. Being aware that this model is qualitative, it gives, however, an explanation of the experimental reactivity, and it also provides a valid tool in identifying zones in the crust where these reactions are likely to occur efficiently. Finally, we hypothesise the role of dry CO2 in the carbonate formation through the interactions with the basalts.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference56 articles.

1. Analysis of pipeline transportation systems for carbon dioxide sequestration;Witowski;Arch. Thermodyn.,2014

2. The Quadrupole Moment of the Carbon Dioxide Molecule;Buckingham;Proc. R. Soc. Lond. Ser. A Math. Phys. Sci.,1963

3. Polar Attributes of Supercritical Carbon Dioxide;Raveendran;Acc. Chem. Res.,2005

4. Cooperative C-H···O Hydrogen Bonding in CO2-Lewis Base Complexes:  Implications for Solvation in Supercritical CO2.;Raveendran;J. Am. Chem. Soc.,2002

5. Application of supercritical CO2 in lipid extraction—A review;Sahena;J. Food Eng.,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3