The Prospect of Recovering Vanadium, Nickel, and Molybdenum from Stone Coal by Using Combined Beneficiation and Metallurgy Technology Based on Mineralogy Features

Author:

Wang MiaoORCID,Cai Liulu,Wen Jiankang,Li Wenjuan,Yang Xinlong,Yang Hongying

Abstract

Black shale ore contains rich strategic metal resources such as vanadium, nickel, and molybdenum, but due to its complex composition, it is currently only used in the vanadium extraction industry. Metals such as nickel and molybdenum have not been effectively recovered, resulting in environmental pollution and resource waste. Using mineralogical features and a combination of beneficiation and metallurgy-based tests, the present work carried out feasibility studies of the combined beneficiation and metallurgy processes. The mineralogical features of the stone coal sample were studied using chemical analysis, an automatic mineral analyzer (BPMA), etc., and we identified the main phase composition, embedded characteristics, and particle size distribution of the associated strategic metals, vanadium, nickel, and molybdenum. The results showed that the grade of V2O5 in the stone coal was 1.29%, which was mainly present in carbonaceous clay and mica minerals. The nickel grade was 0.53%, mainly in the form of nickel–magnesium spinel and a small amount of nickel-containing magnesite. The stone coal contained 0.11% molybdenum; the mineral particles were fine, mostly in the form of molybdenite, and some were associated with carbonaceous matter and carbonaceous clay minerals. Based on the mineralogical feature, we proposed using the scrubbing–desliming and flotation process to enrich vanadium, nickel, and molybdenum. Our preliminary experiments obtained two products: vanadium–molybdenum-rich sludge and nickel-containing tailings. The V2O5 and molybdenum grades in the sludge were 4.10% and 0.44%, respectively, and the recovery was 41.31% and 51.40%, respectively. The nickel grade in the tailings was 1.49%. These products were roasted and leached. The vanadium, nickel, and molybdenum in the stone coal were effectively recovered through the beneficiation–metallurgy combination process, and the comprehensive utilization rate of the stone coal was improved.

Funder

National Key Research and Development Project

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3