Advanced Simulation of Quartz Flotation Using Micro-Nanobubbles by Hybrid Serving of Historical Data (HD) and Deep Learning (DL) Methods

Author:

Nazari Sabereh,Gholami AlirezaORCID,Khoshdast Hamid,Li Jinlong,He Yaqun,Hassanzadeh AhmadORCID

Abstract

The present study investigates the optimization and advanced simulation of the flotation process of coarse particles (–425 + 106) using micro-nanobubbles (MNBs). For this purpose, flotation experiments in the presence and absence of MNBs were performed on coarse quartz particles, and the results were statistically analyzed. Methyl isobutyl carbinol (MIBC) was employed as a frother for generating MNBs through hydrodynamic cavitation. The significance of the operating variables, including impeller speed, air flow rate, together with the bubble size, and particle size on the flotation recovery was assessed using historical data (HD) design and analysis of variance (ANOVA). The correlation between the flotation parameters and process response in the presence and absence of MNBs was modeled using hybrid convolutional neural networks (CNNs) and recurrent neural networks (RNNs) as the deep learning (DL) frameworks to automatically extract features from input data using a CNN as the base layer. The ANOVA results indicated that all variables affect process responses statistically and meaningfully. Significant interactions were found between air flow rate and particle size as well as impeller speed and MNB size. It was found that a CNN-RNN model could finally be used to model the process based on the intelligent simulation results. Based on Pearson correlation coefficients (PCCs), it was evident that particle size had a strong linear relationship with recovery. However, Shapley additive explanations (SHAP) was considerably more accurate in predicting relationships than Pearson correlations, even though the model outputs agreed well.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3