Investigating the Capabilities of Various Multispectral Remote Sensors Data to Map Mineral Prospectivity Based on Random Forest Predictive Model: A Case Study for Gold Deposits in Hamissana Area, NE Sudan

Author:

Mohamed Taha Abdallah M.ORCID,Xi YantaoORCID,He Qingping,Hu Anqi,Wang Shuangqiao,Liu XianbinORCID

Abstract

Remote sensing data provide significant information about surface geological features, but they have not been fully investigated as a tool for delineating mineral prospective targets using the latest advancements in machine learning predictive modeling. In this study, besides available geological data (lithology, structure, lineaments), Landsat-8, Sentinel-2, and ASTER multispectral remote sensing data were processed to produce various predictor maps, which then formed four distinct datasets (namely Landsat-8, Sentinel-2, ASTER, and Data-integration). Remote sensing enhancement techniques, including band ratio (BR), principal component analysis (PCA), and minimum noise fraction (MNF), were applied to produce predictor maps related to hydrothermal alteration zones in Hamissana area, while geological-based predictor maps were derived from applying spatial analysis methods. These four datasets were used independently to train a random forest algorithm (RF), which was then employed to conduct data-driven gold mineral prospectivity modeling (MPM) of the study area and compare the capability of different datasets. The modeling results revealed that ASTER and Sentinel-2 datasets achieved very similar accuracy and outperformed Landsat-8 dataset. Based on the area under the ROC curve (AUC), both datasets had the same prediction accuracy of 0.875. However, ASTER dataset yielded the highest overall classification accuracy of 73%, which is 6% higher than Sentinel-2 and 13% higher than Landsat-8. By using the data-integration concept, the prediction accuracy increased by about 6% (AUC: 0.938) compared with the ASTER dataset. Hence, these results suggest that the framework of exploiting remote sensing data is promising and should be used as an alternative technique for MPM in case of data availability issues.

Funder

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3