Role of Clay Mineralogy in the Stabilization of Soil Organic Carbon in Olive Groves under Contrasted Soil Management

Author:

Calero Julio,García-Ruiz Roberto,Torrús-Castillo Milagros,Vicente-Vicente JoséORCID,Martín-García JuanORCID

Abstract

Cropland soils are key systems in global carbon budgets due to their high carbon-sequestration potential. It is widely accepted that clays are one of the soil components that have a significant effect on the stabilisation of soil organic carbon (SOC), owing to its surface interactions with organic molecules. However, the identification of the direct effects of clays on SOC stabilization is complicated, mainly due to the difficulty of accurately characterizing the mineralogy of clays, especially phyllosilicates. In this study, the relationships between soil phyllosilicates and functional SOC pools in woodlands and comparable olive groves, under two contrasting management systems (bare soils versus soil under cover crops) and parent materials (calcareous and siliceous), were explored. The total mineralogy of soil and clay fractions and the soil-clay assemblages were analysed through the decomposition of X-ray diffraction patterns, and were then related to four SOC pools. Total and unprotected SOC was higher in olive groves under cover crops, and this was true independent of the parent material, proving the importance of herbaceous covers in SOC sequestration in woody crops. Some significant correlations between clay minerals and SOC fractions were found. Interestingly, mixed-layer content was correlated with the biochemically protected SOC fraction (r = 0.810, p < 0.05), and this was so even when the partial correlation coefficient was calculated (r = 0.761, p < 0.05). According to the partial correlation networks (PCN), four separated clusters of variables were obtained, which joined into only one at fdr < 0.25. The PCNs supported the direct correlation between mixed-layer content, especially those rich in smectite, and the biochemically protected SOC fraction, suggesting that smectite layers may stabilize organic molecules. Since potassium enrichment is higher in the rooted layers of woodland and soils under cover crops, and this increase is related to the collapse of swelling layers, these soils were poorer in smectite phases than the bare soils. This also would explain why the biochemically protected SOC was more abundant in the latter.

Funder

PRIMA H2020

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference50 articles.

1. Matching policy and science: Rationale for the ‘4 per 1000—Soils for food security and climate’ initiative;Soussana;Soil Tillage Res.,2019

2. Soil carbon management and climate change;Lal;Carbon Manag.,2013

3. Global Sequestration Potential of Increased Organic Carbon in Cropland Soils;Zomer;Nat. Sci. Rep.,2017

4. Soil carbon 4 per mille;Minasny;Geoderma,2017

5. Stabilization mechanisms of soil organic matter: Implication for C-saturation of soils;Six;Plant Soil,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3