Study on Characteristics of Compression Deformation and Post-Peak Stress Rebound for Solid Waste Cemented Body

Author:

Zhao Xinyuan,Yang Ke,He Xiang,Wei Zhen,Zhang Jiqiang,Yu Xiang

Abstract

Most of the previous studies focused on the mechanical characteristics before the stress peak of solid waste cemented backfill, but in the compression process of a solid waste cemented body, the phenomenon of post-peak stress rebound often occurs. Through the uniaxial compression experiment of a solid waste cemented body composed of coal gangue, fly ash, desulfurization gypsum, gasification slag, and furnace bottom slag, this paper analyzed the compression deformation characteristics of a solid waste cemented body with different mix proportions before and after the stress peak, established the stress–strain curve model of rebound stress in the rising and descending section after the stress peak, and revealed the reasons for the rebound stress and secondary unloading of the cemented body after the stress peak. The results showed that the maximum rebound stress accounts for 40%–80% of the compressive strength, and the changes in the two are positively correlated. The stress–strain curve model is a cubic function in the post-peak stress rising section and a quadratic rational function in the descending section. With the increase in the maximum compressive strength of the cemented body, its maximum rebound stress also increases, but its corresponding compressive strain generally shows a downward trend. There is a positive correlation between the rebound stress increment and strain increment of the cemented body. The change in the supporting structure and the evolution of the failure form of the cemented body before and after the maximum rebound stress indicate that the compression failure of the residual supporting structure caused by the main crack is the main reason for the rebound of the stress after the peak value of the cemented body to the complete unloading.

Funder

Anhui Province University Graduate Research Project

National Program on Key Basic Research Project of China

Research Project of Institute of Energy, Hefei Comprehensive National Science Center

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3