A Fast and Accurate Lane Detection Method Based on Row Anchor and Transformer Structure

Author:

Chai Yuxuan1,Wang Shixian12ORCID,Zhang Zhijia12

Affiliation:

1. School of Artificial Intelligence, Shenyang University of Technology, Shenyang 110870, China

2. Shenyang Key Laboratory of Information Perception and Edge Computing, Shenyang 110870, China

Abstract

Lane detection plays a pivotal role in the successful implementation of Advanced Driver Assistance Systems (ADASs), which are essential for detecting the road’s lane markings and determining the vehicle’s position, thereby influencing subsequent decision making. However, current deep learning-based lane detection methods encounter challenges. Firstly, the on-board hardware limitations necessitate an exceptionally fast prediction speed for the lane detection method. Secondly, improvements are required for effective lane detection in complex scenarios. This paper addresses these issues by enhancing the row-anchor-based lane detection method. The Transformer encoder–decoder structure is leveraged as the row classification enhances the model’s capability to extract global features and detect lane lines in intricate environments. The Feature-aligned Pyramid Network (FaPN) structure serves as an auxiliary branch, complemented by a novel structural loss with expectation loss, further refining the method’s accuracy. The experimental results demonstrate our method’s commendable accuracy and real-time performance, achieving a rapid prediction speed of 129 FPS (the single prediction time of the model on RTX3080 is 15.72 ms) and a 96.16% accuracy on the Tusimple dataset—a 3.32% improvement compared to the baseline method.

Funder

Liaoning Province, China, Applied Basic Research Program in 2023

Publisher

MDPI AG

Reference33 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3