Converter Capacitor Temperature Estimation Based on Continued Training LSTM under Variable Load Conditions

Author:

Dai Xiaoteng1ORCID,Chen Yiqiang2,Chen Jie2ORCID,Qiu Ruichang2

Affiliation:

1. School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China

2. China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 510610, China

Abstract

Capacitors are crucial components in power electronic converters, responsible for harmonic elimination, energy buffering, and voltage stabilization. However, they are also the most susceptible to damage due to their operational environment. Accurate temperature estimation of capacitors is essential for monitoring their condition and ensuring the reliability of the converter system. This paper presents a novel method for estimating the core temperature of capacitors using a long short-term memory (LSTM) algorithm. The approach incorporates a continued training mechanism to adapt to variable load conditions in converters. Experimental results demonstrate the proposed method’s high accuracy and robustness, making it suitable for real-time capacitor temperature monitoring in practical applications.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3