Development of a Deep-Sea Submersible Chemiluminescent Analyzer for Sensing Short-Lived Reactive Chemicals

Author:

Taenzer LinaORCID,Grabb KalinaORCID,Kapit Jason,Pardis William,Wankel Scott D.,Hansel Colleen M.

Abstract

Based on knowledge of their production pathways, and limited discrete observations, a variety of short-lived chemical species are inferred to play active roles in chemical cycling in the sea. In some cases, these species may exert a disproportionate impact on marine biogeochemical cycles, affecting the redox state of metal and carbon, and influencing the interaction between organisms and their environment. One such short-lived chemical is superoxide, a reactive oxygen species (ROS), which undergoes a wide range of environmentally important reactions. Yet, due to its fleeting existence which precludes traditional shipboard analyses, superoxide concentrations have never been characterized in the deep sea. To this end, we have developed a submersible oceanic chemiluminescent analyzer of reactive intermediate species (SOLARIS) to enable continuous measurements of superoxide at depth. Fluidic pumps on SOLARIS combine seawater for analysis with reagents in a spiral mixing cell, initiating a chemiluminescent reaction that is monitored by a photomultiplier tube. The superoxide in seawater is then related to the quantity of light produced. Initial field deployments of SOLARIS have revealed high-resolution trends in superoxide throughout the water column. SOLARIS presents the opportunity to constrain the distributions of superoxide, and any number of chemiluminescent species in previously unexplored environments.

Funder

National Science Foundation

Link Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3