Optimization Based on Toughness and Splitting Tensile Strength of Steel-Fiber-Reinforced Concrete Incorporating Silica Fume Using Response Surface Method

Author:

Köksal FuatORCID,Beycioğlu Ahmet,Dobiszewska Magdalena

Abstract

The greatest weakness of concrete as a construction material is its brittleness and low fracture energy absorption capacity until failure occurs. In order to improve concrete strength and durability, silica fume SF is introduced into the mixture, which at the same time leads to an increase in the brittleness of concrete. To improve the ductility and toughness of concrete, short steel fibers have been incorporated into concrete. Steel fibers and silica fume are jointly preferred for concrete design in order to obtain concrete with high strength and ductility. It is well-known that silica fume content and fiber properties, such as aspect ratio and volume ratio, directly affect the properties of SFRCs. The mixture design of steel-fiber-reinforced concrete (SFRC) with SF addition is a very important issue in terms of economy and performance. In this study, an experimental design was used to study the toughness and splitting tensile strength of SFRC with the response surface method (RSM). The models established by the RSM were used to optimize the design of SFRC in terms of the usage of optimal silica fume content, and optimal steel fiber volume and aspect ratio. Optimum silica fume content and fiber volume ratio values were determined using the D-optimal design method so that the steel fiber volume ratio was at the minimum and the bending toughness and splitting tensile strength were at the maximum. The amount of silica fume used as a cement replacement, aspect ratio, and volume fraction of steel fiber were chosen as independent variables in the experiment. Experimentally obtained mechanical properties of SFRC such as compression, bending, splitting, modulus of elasticity, toughness, and the toughness index were the dependent variables. A good correlation was observed between the dependent and independent variables included in the model. As a result of the optimization, optimum steel fiber volume was determined as 0.70% and silica fume content was determined as 15% for both aspect ratios.

Funder

Polish National Agency for Academic Exchange

Publisher

MDPI AG

Subject

General Materials Science

Reference44 articles.

1. Fibre Reinforced Concrete: A Material in Development;Walraven;Proceedings of the Conference in Structural Applications of Fiber Reinforced Concretes,2007

2. Fracture Toughness of Fiber Reinforced Concrete;Gopalaratnam;ACI Mater. J.,1991

3. Flexural Behavior and Toughness of Fibre Reinforced Concretes;Ramakrishnan;Transp. Res. Rec.,1989

4. Evaluation of the influence of post-cracking response of steel fibre reinforced concrete (SFRC) on load carrying capacity of SFRC panels

5. Workability and Mechanical Performance of Steel Fiber-Reinforced Self-Compacting Concrete with Fly Ash

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3