Comparative Study on the Seepage Characteristics of Gas-Containing Briquette and Raw Coal in Complete Stress–Strain Process

Author:

Ding KeORCID,Wang Lianguo,Li ZhaolinORCID,Guo Jiaxing,Ren Bo,Jiang Chongyang,Wang ShuaiORCID

Abstract

In this study, triaxial compression and seepage tests were conducted on briquette and raw coal samples using a coal rock mechanics-seepage triaxial test system (TAWD-2000) to obtain the complete stress–strain curves of the two samples under certain conditions. On this basis, the different damage forms of the two coal samples and the effect of their deformation and damage on their permeability were analyzed from the perspective of fine-scale damage mechanics. Moreover, the sensitivity of permeability to external variables and the suddenness of coal and gas outbursts were discussed. The results show that the compressive strength of raw coal is 27.1 MPa and the compressive strength of briquette is 17.3 MPa, the complete stress–strain curves of the two coal samples can be divided into four stages and show a good correspondence to the permeability–axial strain curves. Since briquette and raw coal have different structural properties, they present different damage mechanisms under load, thus showing great diversity in the permeability-axial strain curve, especially in the damage stage. The deformation affects the seepage characteristics of briquette mainly in the latter two stages, while it affects raw coal throughout the test. The four stages of the complete stress–strain seepage test of raw coal can well explain the four stages of coal and gas outburst process, i.e., preparation, initiation, development, and termination. Hence, the law of coal permeability to gas variation can be utilized for the coal and gas outburst prediction and forecast. The research results are valuable for exploring the real law of gas migration in coal seams.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3