Data-Based Statistical Analysis of Laboratory Experiments on Concrete Frost Damage and Its Implications on Service Life Prediction

Author:

Gong FuyuanORCID,Zhi Dian,Jia Jianguo,Wang Zhao,Ning Yingjie,Zhang Bo,Ueda TamonORCID

Abstract

To meet the requirements of durability design for concrete suffering frost damage, several test standards have been launched. Among the various damage indexes such as deteriorated compressive strength, relative dynamic elastic modulus (RDEM), residual deformation, etc., the concept of a “Durability Factor” (DF) is proposed by many standards to define the frost resistivity of concrete against frost action based on the experimental results from standard tests. Through a review of the literature, a clear tendency of strength/RDEM decay and residual deformation increase is captured with increasing cycles of freezing and thawing. However, tests following different standards finally derive huge scattering quantitative responses of frost resistance. Based on the large database of available laboratory experiments, this study presents a statistical analysis to propose a predictable model to calculate the DF with respect to other material factors. The statistical model is believed to be more convenient for engineering applications since the time-consuming experiment is no longer needed, and it is more precise compared with that developed according to only single experimental results to cover the uncertainties and unavoidable errors in specific tests. Moreover, the formula to calculate the DF is revised into a more general form so as to be applicable for all the laboratory experiments even for those cases without fully following the standards to derive a DF value.

Funder

State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining & Technology

Natural Science Foundation of Zhejiang Province

National Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3