Linking the Extended Autonomic System with the Homeostat Theory: New Perspectives about Dysautonomias

Author:

Goldstein David S.1ORCID

Affiliation:

1. Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA

Abstract

Dysautonomias are conditions in which altered functions of one or more components of the autonomic nervous system (ANS) adversely affect health. This essay is about how elucidating mechanisms of dysautonomias may rationalize personalized treatments. Emphasized here are two relatively new ideas—the “extended” autonomic system (EAS) and the “homeostat” theory as applied to the pathophysiology and potential treatments of dysautonomias. The recently promulgated concept of the EAS updates Langley’s ANS to include neuroendocrine, immune/inflammatory, and central components. The homeostat theory builds on Cannon’s theory of homeostasis by proposing the existence of comparators (e.g., a thermostat, glucostat, carbistat, barostat) that receive information about regulated variables (e.g., core temperature, blood glucose, blood gases, delivery of blood to the brain). Homeostats sense discrepancies between the information and response algorithms. The presentation links the EAS with the homeostat theory to understand pathophysiological mechanisms of dysautonomias. Feed-forward anticipatory processes shift input–output curves and maintain plateau levels of regulated variables within different bounds of values—“allostasis”. Sustained allostatic processes increase long-term wear-and-tear on effectors and organs—allostatic load. They decreaseing thresholds for destabilizing and potentially fatal positive feedback loops. The homeostat theory enables mathematical models that define stress, allostasis, and allostatic load. The present discussion applies the EAS and homeostat concepts to specific examples of pediatric, adolescent/adult, and geriatric dysautonomias—familial dysautonomia, chronic orthostatic intolerance, and Lewy body diseases. Computer modeling has the potential to take into account the complexity and dynamics of allostatic processes and may yield testable predictions about individualized treatments and outcomes.

Funder

Division of Intramural Research of the NIH, NINDS

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Reference61 articles.

1. The grand challenge of autonomic disorders;Cheshire;Front. Neurol.,2022

2. The extended autonomic system, dyshomeostasis, and COVID-19;Goldstein;Clin. Auton. Res.,2020

3. Stress and the “extended” autonomic system;Goldstein;Auton. Neurosci.,2021

4. The autonomic nervous system;Langley;Brain,1903

5. Goldstein, D.S. (2006). Adrenaline and the Inner World: An Introduction to Scientific Integrative Medicine, The Johns Hopkins University Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3