A Phosphorous-Based Bi-Functional Flame Retardant Based on Phosphaphenanthrene and Aluminum Hypophosphite for an Epoxy Thermoset

Author:

Xu Bo,Liu Yanting,Wei Simiao,Zhao Siheng,Qian LijunORCID,Chen Yajun,Shan Hao,Zhang Qinglei

Abstract

A phosphorous-based bi-functional compound HPDAl was used as a reactive-type flame retardant (FR) in an epoxy thermoset (EP) aiming to improve the flame retardant efficiency of phosphorus-based compounds. HPDAl, consisting of two different P-groups of aluminum phosphinate (AHP) and phosphophenanthrene (DOPO) with different phosphorous chemical environments and thus exerting different FR actions, exhibited an intramolecular P-P groups synergy and possessed superior flame-retardant efficiency compared with DOPO or AHP alone or the physical combination of DOPO/AHP in EP. Adding 2 wt.% HPDAl made EP composites acquire a LOI value of 32.3%, pass a UL94 V-0 rating with a blowing-out effect, and exhibit a decrease in the heat/smoke release. The flame retardant modes of action of HPDAl were confirmed by the experiments of the scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and thermogravimetry–Fourier transform infrared spectroscopy–gas chromatograph/mass spectrometer (TG-FTIR-GC/MS). The results indicate that the phosphorous-based FRs show different influences on the flame retardancy of composites, mainly depending on their chemical structures. HPDAl had a flame inhibition effect in the gas phase and a charring effect in the condensed phase, with a well-balanced distribution of P content in the gas/condensed phase. Furthermore, the addition of HPDAl hardly impaired the mechanical properties of the matrix due to the link by chemical bonds between them.

Funder

General Project of Science and Technology Plan of Beijing Municipal Commission of Education

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3