Abstract
Alcohol use disorder (AUD) is characterized by escalating alcohol consumption, preoccupation with alcohol, and continued alcohol consumption despite adverse consequences. Dopamine has been implicated in neural and behavioral processes involved in reward and reinforcement and is a critical neurotransmitter in AUD. Clinical and preclinical research has shown that long-term ethanol exposure can alter dopamine release, though most of this work has focused on nucleus accumbens (NAc). Like the NAc, the dorsal striatum (DS) is implicated in neural and behavioral processes in AUD. However, little work has examined chronic ethanol effects on DS dopamine dynamics. Therefore, we examined the effect of ethanol consumption and withdrawal on dopamine release and its presynaptic regulation with fast-scan cyclic voltammetry in C57BL/6J mice. We found that one month of ethanol consumption did not alter maximal dopamine release or dopamine tissue content. However, we did find that D2 dopamine autoreceptors were sensitized. We also found a decrease in cholinergic control of dopamine release via β2-containing nAChRs on dopamine axons. Interestingly, both effects were reversed following withdrawal, raising the possibility that some of the neuroadaptations in AUD might be reversible in abstinence. Altogether, this work elucidates some of the chronic alcohol-induced neurobiological dysfunctions in the dopamine system.
Funder
National Institute on Alcohol Abuse and Alcoholism
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献