Nucleotide-Induced Nanoscale Changes in the Mechanical Properties of Rat Cerebellar Astrocytes: Selective Stimulation and Blocking of the Purinergic Receptor P2X7

Author:

Gil-Redondo Juan CarlosORCID,Iturri JagobaORCID,Trueba Yaiza,Benito-León MaríaORCID,Pérez-Sen Raquel,Delicado Esmerilda G.,Toca-Herrera José LuisORCID,Ortega FelipeORCID

Abstract

As members of the family of nucleotide receptors, P2X7 receptors are of particular interest due to their unique structural and pharmacological characteristics. As ATP-gated ionic channels, P2X7 receptors in their activation elicit membrane depolarization; extracellular calcium influx; and activation of several downstream intracellular signaling pathways, some of them independent of the ionic channel activity. Further interactions of P2X7 receptors and cytoskeleton-related proteins have also been confirmed, and we previously described the effects of P2X7 receptor stimulation on the morphology of rat cerebellar astrocytes. In the present work, we used time-lapse video microscopy and atomic force microscopy (AFM) to elucidate the effects of P2X7 receptor stimulation on the morphology, migratory capabilities, and mechanical properties of rat cerebellar astrocytes in vitro. Stimulation of P2X7 receptors with the selective agonist BzATP specifically caused an increase in cell size, motility, and number of membrane protrusions of the astrocytes in culture. These effects were reverted when cells were previously treated with the competitive antagonist of P2X7R, A 438079. AFM analysis also showed an increase in cell stiffness and viscosity after P2X7 receptor stimulation. Surprisingly, these effects on the mechanical properties of the cell were not blocked by the treatment with the antagonist. Fluorescence microscopy analysis of the actin cytoskeleton showed an increase in actin stress fibers after BzATP treatment, an effect that again was not blocked by previous treatment with the antagonist, further confirming that the effects of P2X7 receptors on the cytoskeleton of astrocytes are, at least in part, independent of the ionic channel activity.

Funder

Comunidad de Madrid

Ministerio de Ciencia e innovacion

FWF Austrian Science Fund

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3