Apoptotic Body-Rich Media from Tenocytes Enhance Proliferation and Migration of Tenocytes and Bone Marrow Stromal Cells

Author:

Dong ChenhuiORCID,Gingery Anne,Amadio Peter C.,An Kai-Nan,Moran Steven L.,Zhao Chunfeng

Abstract

The intrinsic healing following tendon injury is ideal, in which tendon progenitor cells proliferate and migrate to the injury site to directly bridge or regenerate tendon tissue. However, the mechanism determining why and how those cells are attracted to the injury site for tendon healing is not understood. Since the tenocytes near the injury site go through apoptosis or necrosis following injury, we hypothesized that secretions from injured tenocytes might have biological effects on cell proliferation and migration to enhance tendon healing. Tenocyte apoptosis was induced by 24 h cell starvation. Apoptotic body-rich media (T-ABRM) and apoptotic body-depleted media (T-ABDM) were collected from culture media after centrifuging. Tenocytes and bone marrow-derived stem cells (BMDSCs) were isolated and cultured with the following four media: (1) T-ABRM, (2) T-ABDM, (3) GDF-5, or (4) basal medium with 2% fetal calf serum (FCS). The cell activities and functions were evaluated. Both T-ABRM and T-ABDM treatments significantly stimulated the cell proliferation, migration, and extracellular matrix synthesis for both tenocytes and BMDSCs compared to the control groups (GDF-5 and basal medium). However, cell proliferation, migration, and extracellular matrix production of T-ABRM-treated cells were significantly higher than the T-ABDM, which indicates the apoptotic bodies are critical for cell activities. Our study revealed the possible mechanism of the intrinsic healing of the tendon in which apoptotic bodies, in the process of apoptosis, following tendon injury promote tenocyte and stromal cell proliferation, migration, and production. Future studies should analyze the components of the apoptotic bodies that play this role, and, thus, the targeting of therapeutics can be developed.

Funder

National Institutes of Health

Musculoskeletal Transplant Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3