Photosynthetic Efficiency and Glyco-Metabolism Changes in Artificial Triploid Loquats Contribute to Heterosis Manifestation

Author:

Wang Lingli,Tu Meiyan,Li Jing,Sun Shuxia,Song Haiyan,Xu Zihong,Chen Dong,Liang GuoluORCID

Abstract

Previous studies indicated that extensive genetic variations could be generated due to polyploidy, which is considered to be closely associated with the manifestation of polyploid heterosis. Our previous studies confirmed that triploid loquats demonstrated significant heterosis, other than the ploidy effect, but the underlying mechanisms are largely unknown. This study aimed to overcome the narrow genetic distance of loquats, increase the genetic variation level of triploid loquats, and systematically illuminate the heterosis mechanisms of triploid loquats derived from two cross combinations. Here, inter-simple sequence repeats (ISSRs) and simple sequence repeats (SSRs) were adopted for evaluating the genetic diversity, and transcriptome sequencing (RNA-Seq) was performed to investigate gene expression as well as pathway changes in the triploids. We found that extensive genetic variations were produced during the formation of triploid loquats. The polymorphism ratios of ISSRs and SSRs were 43.75% and 19.32%, respectively, and almost all their markers had a PIC value higher than 0.5, suggesting that both ISSRs and SSRs could work well in loquat assisted breeding. Furthermore, our results revealed that by broadening the genetic distance between the parents, genetic variations in triploids could be promoted. Additionally, RNA-Seq results suggested that numerous genes differentially expressed between the triploids and parents were screened out. Moreover, KEGG analyses revealed that “photosynthetic efficiency” and “glyco-metabolism” were significantly changed in triploid loquats compared with the parents, which was consistent with the results of physiological indicator analyses, leaf micro-structure observations, and qRT-PCR validation. Collectively, our results suggested that extensive genetic variations occurred in the triploids and that the changes in the “photosynthetic efficiency” as well as “glyco-metabolism” of triploids might have further resulted in heterosis manifestation in the triploid loquats.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3