Modeling DTA by Combining Multiple-Instance Learning with a Private-Public Mechanism

Author:

Wang ChunyuORCID,Chen YuanlongORCID,Zhao LinglingORCID,Wang Junjie,Wen Naifeng

Abstract

The prediction of the strengths of drug–target interactions, also called drug–target binding affinities (DTA), plays a fundamental role in facilitating drug discovery, where the goal is to find prospective drug candidates. With the increase in the number of drug–protein interactions, machine learning techniques, especially deep learning methods, have become applicable for drug–target interaction discovery because they significantly reduce the required experimental workload. In this paper, we present a spontaneous formulation of the DTA prediction problem as an instance of multi-instance learning. We address the problem in three stages, first organizing given drug and target sequences into instances via a private-public mechanism, then identifying the predicted scores of all instances in the same bag, and finally combining all the predicted scores as the output prediction. A comprehensive evaluation demonstrates that the proposed method outperforms other state-of-the-art methods on three benchmark datasets.

Funder

National Natural Science Foundation of China

the Science and Technology Development Fund of Nanjing Medical University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3