Abstract
The biogenetic law (recapitulation law) states that ontogenesis recapitulates phylogenesis. However, this law can be distorted by the modification of development. We showed the recapitulation of phylogenesis during the differentiation of various cell types, using a meta-analysis of human single-cell transcriptomes, with the control for cell cycle activity and the improved phylostratigraphy (gene dating). The multipotent progenitors, differentiated from pluripotent embryonic stem cells (ESC), showed the downregulation of unicellular (UC) genes and the upregulation of multicellular (MC) genes, but only in the case of those originating up to the Euteleostomi (bony vertebrates). This picture strikingly resembles the evolutionary profile of regulatory gene expansion due to gene duplication in the human genome. The recapitulation of phylogenesis in the induced pluripotent stem cells (iPSC) during their differentiation resembles the ESC pattern. The unipotent erythroblasts differentiating into erythrocytes showed the downregulation of UC genes and the upregulation of MC genes originating after the Euteleostomi. The MC interactome neighborhood of a protein encoded by a UC gene reverses the gene expression pattern. The functional analysis showed that the evolved environment of the UC proteins is typical for protein modifiers and signaling-related proteins. Besides a fundamental aspect, this approach can provide a unified framework for cancer biology and regenerative/rejuvenation medicine because oncogenesis can be defined as an atavistic reversal to a UC state, while regeneration and rejuvenation require an ontogenetic reversal.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献