Target-Specific Machine Learning Scoring Function Improved Structure-Based Virtual Screening Performance for SARS-CoV-2 Drugs Development

Author:

Tahir ul Qamar MuhammadORCID,Zhu Xi-Tong,Chen Ling-Ling,Alhussain Laila,Alshiekheid Maha A.,Theyab AbdulrahmanORCID,Algahtani Mohammad

Abstract

Leveraging machine learning has been shown to improve the accuracy of structure-based virtual screening. Furthermore, a tremendous amount of empirical data is publicly available, which further enhances the performance of the machine learning approach. In this proof-of-concept study, the 3CLpro enzyme of SARS-CoV-2 was used. Structure-based virtual screening relies heavily on scoring functions. It is widely accepted that target-specific scoring functions may perform more effectively than universal scoring functions in real-world drug research and development processes. It would be beneficial to drug discovery to develop a method that can effectively build target-specific scoring functions. In the current study, the bindingDB database was used to retrieve experimental data. Smina was utilized to generate protein-ligand complexes for the extraction of InteractionFingerPrint (IFP) and SimpleInteractionFingerPrint SIFP fingerprints via the open drug discovery tool (oddt). The present study found that randomforestClassifier and randomforestRegressor performed well when used with the above fingerprints along the Molecular ACCess System (MACCS), Extended Connectivity Fingerprint (ECFP4), and ECFP6. It was found that the area under the precision-recall curve was 0.80, which is considered a satisfactory level of accuracy. In addition, our enrichment factor analysis indicated that our trained scoring function ranked molecules correctly compared to smina’s generic scoring function. Further molecular dynamics simulations indicated that the top-ranked molecules identified by our developed scoring function were highly stable in the active site, supporting the validity of our developed process. This research may provide a template for developing target-specific scoring functions against specific enzyme targets.

Funder

Guangxi University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3